If it's not what You are looking for type in the equation solver your own equation and let us solve it.
64x-3x^2=0
a = -3; b = 64; c = 0;
Δ = b2-4ac
Δ = 642-4·(-3)·0
Δ = 4096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4096}=64$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(64)-64}{2*-3}=\frac{-128}{-6} =21+1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(64)+64}{2*-3}=\frac{0}{-6} =0 $
| (8+2x)x-6=13+(7)-6 | | 13.2-x=6.6 | | 10+1/2x=9 | | 31/4=12+w | | 0=5x^2-4x-32 | | 1x1-8=-5 | | 8x-7+2x=13+5 | | x=-1x=3 | | 5x-10=-2x+7(x+14) | | 5x-10=2x+7(x+14) | | 5-(n+2=5n | | -51x+11=10 | | x=21/4,x=-11/4 | | x=-1,x=9 | | x=-1,x=-9 | | -41x+51=-16 | | x=6,x=-18 | | 4x-3=21-3x;4 | | x=-6,x=18 | | x=-9,x=21 | | 3(x+7)=7x-19 | | 21x-61+14=38 | | 17x+131=27 | | 15x-61=-41 | | 15x-6|=-41 | | -2(x+4)=9x+25 | | 360/x+4=360/x=-3 | | 2+5(x+8)=2(5x+4)+19 | | 5(7+n)=6n+31 | | -2(x+3)=10+4x | | 4(2x+4)=11x+4 | | 50=5y+5 |